Cart (Loading....) | Create Account
Close category search window
 

Distributed Primal–Dual Subgradient Method for Multiagent Optimization via Consensus Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deming Yuan ; Sch. of Autom., Nanjing Univ. of Sci. & Technol., Nanjing, China ; Shengyuan Xu ; Huanyu Zhao

This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 6 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.