By Topic

A Dynamic Hybrid Framework for Constrained Evolutionary Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong Wang ; Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China ; Zixing Cai

Based on our previous work, this paper presents a dynamic hybrid framework, called DyHF, for solving constrained optimization problems. This framework consists of two major steps: global search model and local search model. In the global and local search models, differential evolution serves as the search engine, and Pareto dominance used in multiobjective optimization is employed to compare the individuals in the population. Unlike other existing methods, the above two steps are executed dynamically according to the feasibility proportion of the current population in this paper, with the purpose of reasonably distributing the computational resource for the global and local search during the evolution. The performance of DyHF is tested on 22 benchmark test functions. The experimental results clearly show that the overall performance of DyHF is highly competitive with that of a number of state-of-the-art approaches from the literature.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:42 ,  Issue: 1 )