Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Investigation of Cracking by Cylindrical Dielectric Barrier Discharge Reactor on the n-Hexadecane as a Model Compound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Khani, M.R. ; Laser & Plasma Res. Inst., Shahid Beheshti Univ., Tehran, Iran ; Barzoki, S.H.R. ; Yaghmaee, M.S. ; Hosseini, S.I.
more authors

The main process in oil refinery technologies is the cracking of the heavy fraction of oil into light and valuable hydrocarbons. Dielectric barrier discharge (DBD) reactors, working at atmospheric pressure and low temperature, is one of the newest methods for cracking hydrocarbons, which has been successfully used to crack low-carbon-containing molecules. Therefore, in this paper, the cracking of n-hexadecane as a heavy hydrocarbon fed by using the cylindrical DBD reactor (nonthermal plasma) has been investigated. We studied the effects of gas type, applied voltage, and gas flow rate quantitatively and qualitatively by using gas chromatography with flame ionization detector and mass spectrometry detector. Results showed that methane has better effects on both conversion and cracking percentage in comparison with air. Also, it has been shown that increasing the applied voltage and working gas flow rate enhances the conversion and the cracking percentages. The highest conversion percentage obtained was 9.26% when the applied voltage and methane flow rate were 12 kV and 50 sccm. In this condition, the cracking percentage obtained was 84.34% of the products.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 9 )