By Topic

Level Set Algorithm for Shape Reconstruction of Non-Overlapping Three-Dimensional Penetrable Targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohammad Reza Hajihashemi ; University of Florida, Gainesville, FL, USA ; Magda El-Shenawee

This paper presents a 3-D shape reconstruction algorithm based on the level set method. Multiple dielectric and non-overlapping objects are considered. The level set algorithm is a gradient-type optimization approach that aims to minimize a cost function between measurements and computer-simulated data. The algorithm is capable of retrieving the shape and location of multiple targets made of two different and slightly lossy materials. An appropriate form of the deformation velocity based on the forward and adjoint fields is calculated. The method of moment surface integral equation is implemented to calculate the deformation velocity of the evolving objects. Two sets of Hamilton-Jacobi equations, associated with the two dielectric materials, are solved simultaneously to update the evolving objects. During the inversion scheme, the marching cubes method is employed to restore the surface meshes necessary for the forward solver. The algorithm is tested on corrupted synthetic data with signal-to-noise ratio of 10 dB.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 1 )