Cart (Loading....) | Create Account
Close category search window
 

Satellite-Based Retrieval of Precipitable Water Vapor Over Land by Using a Neural Network Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bonafoni, S. ; Dept. of Electron. & Inf. Eng., Univ. of Perugia, Perugia, Italy ; Mattioli, V. ; Basili, P. ; Ciotti, P.
more authors

A method based on neural networks is proposed to retrieve integrated precipitable water vapor (IPWV) over land from brightness temperatures measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). Water vapor values provided by European Centre for Medium-Range Weather Forecasts (ECMWF) were used to train the network. The performance of the network was demonstrated by using a separate data set of AMSR-E observations and the corresponding IPWV values from ECMWF. Our study was optimized over two areas in Northern and Central Italy. Good agreements on the order of 0.24 cm and 0.33 cm rms, respectively, were found between neural network retrievals and ECMWF IPWV data during clear-sky conditions. In the presence of clouds, an rms of the order of 0.38 cm was found for both areas. In addition, results were compared with the IPWV values obtained from in situ instruments, a ground-based radiometer, and a global positioning system (GPS) receiver located in Rome, and a local network of GPS receivers in Como. An rms agreement of 0.34 cm was found between the ground-based radiometer and the neural network retrievals, and of 0.35 cm and 0.40 cm with the GPS located in Rome and Como, respectively.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.