Cart (Loading....) | Create Account
Close category search window
 

Group and Region Based Parallel Compression Method Using Signal Subspace Projection and Band Clustering for Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang, L. ; Dept. of Commun., Navig. & Control Eng., Nat. Taiwan Ocean Univ., Keelung, Taiwan ; Yang-Lang Chang ; Tang, Z.S. ; Bormin Huang

In this study, a novel group and region based parallel compression approach is proposed for hyperspectral imagery. The proposed approach contains two algorithms, which are clustering signal subspace projection (CSSP) and the maximum correlation band clustering (MCBC). The CSSP first divides the image into proper regions by transforming the high dimensional image data into one dimensional projection length. The MCBC partitions the spectral bands into several groups according to their associated band correlation for each image region. The image data with high degree correlations in spatial/spectral domains are then gathered in groups. Then, the grouped image data is further compressed by Principal Components Analysis (PCA)-based spectral/spatial hyper-spectral image compression techniques. Furthermore, to accelerate the computing efficiency, we present a parallel architecture of the proposed compression approach by using parallel cluster computing techniques. Simulation results performed on AVIRIS images have shown that the proposed group and region based approach performs better than standard 3D hyperspectral image compression. Moreover, the proposed approach achieves better computation efficiency than the direct combination of PCA and JPEG2000 under the same compression ratio.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:4 ,  Issue: 3 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.