By Topic

Equivalent circuit for repeater antenna for wireless power transfer via magnetic resonant coupling considering signed coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Imura, T. ; Grad. Sch. of Frontier Sci., Univ. of Tokyo, Tokyo, Japan

Wireless power transfer technology has received much attention recently. Although the technology has been existed for a long time, never before has it has received the current level of attention. This can be primarily attributed to social demand related to the increased use of mobile devices, which need frequent recharging, and plugging the device into an outlet is not convenient. It is also due to changes in available technology. The emergence of electromagnetic resonant coupling, which works over a large air gap with high efficiency has until recently not been possible with typical technologies. However, there are limitations to using only a transmitting and a receiving antenna. Repeater antennas have been proposed to extend the length of the air gap. Long distance power transfer is achieved by simply installing a repeater between the transmitting and receiving stations. And by installing repeaters inside walls, below desks, and under the floor, it will be possible to realize a fully wireless house in which it is possible to charge devices anywhere inside its confines. Previous studies have demonstrated that a repeater antenna can extend the distance of the power transfer with the installation of a repeater antenna between a transmitting antenna and a receiving antenna. Detailed studies of mutual inductance, the position of repeater antennas and theoretical studies about equivalent circuits cannot be found in the literature. This paper proposes that theoretical study of equivalent circuits of repeater antennas it includes the problem of sign of mutual inductance which is occurred when the repeater antennas are used.

Published in:

Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on

Date of Conference:

21-23 June 2011