By Topic

Rendering potential wearable robot designs with the LOPES gait trainer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Koopman, B. ; Dept. of Biomech. Eng., Univ. of Twente, Enschede, Netherlands ; van Asseldonk, E.H.F. ; van der Kooij, H. ; van Dijk, W.
more authors

In recent years, wearable robots (WRs) for rehabilitation, personal assistance, or human augmentation are gaining increasing interest. To make these devices more energy efficient, radical changes to the mechanical structure of the device are being considered. However, it remains very difficult to predict how people will respond to, and interact with, WRs that differ in terms of mechanical design. Users may adjust their gait pattern in response to the mechanical restrictions or properties of the device. The goal of this pilot study is to show the feasibility of rendering the mechanical properties of different potential WR designs using the robotic gait training device LOPES. This paper describes a new method that selectively cancels the dynamics of LOPES itself and adds the dynamics of the rendered WR using two parallel inverse models. Adaptive frequency oscillators were used to get estimates of the joint position, velocity, and acceleration. Using the inverse models, different WR designs can be evaluated, eliminating the need to build several prototypes. As a proof of principle, we simulated the effect of a very simple WR that consisted of a mass attached to the ankles. Preliminary results show that we are partially able to cancel the dynamics of LOPES. Additionally, the simulation of the mass showed an increase in muscle activity but not in the same level as during the control, where subjects actually carried the mass. In conclusion, the results in this paper suggest that LOPES can be used to render different WRs. In addition, it is very likely that the results can be further optimized when more effort is put in retrieving proper estimations for the velocity and acceleration, which are required for the inverse models.

Published in:

Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on

Date of Conference:

June 29 2011-July 1 2011