By Topic

Recognizing hand movements from a single SEMG sensor using guided under-determined source signal separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Rehabilitation devices, prosthesis and human machine interfaces are among many applications for which surface electromyographic signals (sEMG) can be employed. Systems reliant on these muscle-generated electrical signals require various forms of machine learning algorithms for specific signature recognition. Those systems vary in terms of the signal detection methods, the feature selection and the classification algorithm used. However, in all those cases, the use of multiple sensors is a constant. In this paper, we present a new technique for source signal separation that relies on a single sEMG sensor. This proposed technique was employed in a classification framework for hand movements that achieved comparable results to other approaches in the literature, but yet, it relied on a much simpler classifier and used a very small number of features.

Published in:

2011 IEEE International Conference on Rehabilitation Robotics

Date of Conference:

June 29 2011-July 1 2011