By Topic

Estimating Information-Theoretical nand Flash Memory Storage Capacity and its Implication to Memory System Design Space Exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guiqiang Dong ; Electr., Comput., & Syst. Eng. Dept., Rensselaer Polytech. Inst. (RPI), Troy, NY, USA ; Yangyang Pan ; Ningde Xie ; Varanasi, C.
more authors

Today and future NAND flash memory will heavily rely on system-level fault-tolerance techniques such as error correction code (ECC) to ensure the overall system storage integrity. Since ECC demands the storage of coding redundancy and hence degrades effective cell storage efficiency, it is highly desirable to use more powerful coding solutions that can maintain the system storage reliability at less coding redundancy. This has motivated a growing interest in the industry to search for alternatives to BCH code being used in today. Regardless to specific ECCs, it is of great practical importance to know the theoretical limit on the achievable cell storage efficiency, which motivates this work. We first develop an approximate NAND flash memory channel model that explicitly incorporates program/erase (P/E) cycling effects and cell-to-cell interference, based on which we then develop strategies for estimating the information-theoretical bounds on cell storage efficiency. We show that it can readily reveal the tradeoffs among cell storage efficiency, P/E cycling endurance, and retention limit, which can provide important insights for system designers. Finally, motivated by the dynamics of P/E cycling effect revealed by the information-theoretical study, we propose two memory system design techniques that can improve the average NAND flash memory programming speed and increase the total amount of user data that can be stored in NAND flash cell over its entire lifetime.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 9 )