By Topic

Perceptually Augmented Simulator Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Edmunds, T. ; Dept. of Comput. Sci., Univ. of British Columbia, Vancouver, BC, Canada ; Pai, D.K.

Training simulators have proven their worth in a variety of fields, from piloting to air-traffic control to nuclear power station monitoring. Designing surgical simulators, however, poses the challenge of creating trainers that effectively instill not only high-level understanding of the steps to be taken in a given situation, but also the low-level “muscle-memory” needed to perform delicate surgical procedures. It is often impossible to build an ideal simulator that perfectly mimics the haptic experience of a surgical procedure, but by focussing on the aspects of the experience that are perceptually salient we can build simulators that effectively instill learning. We propose a general method for the design of surgical simulators that augment the perceptually salient aspects of an interaction. Using this method, we can increase skill-transfer rates without requiring expensive improvements in the capability of the rendering hardware or the computational complexity of the simulation. In this paper, we present our decomposition-based method for surgical simulator design, and describe a user-study comparing the training effectiveness of a haptic-search-task simulator designed using our method versus an unaugmented simulator. The results show that perception-based task decomposition can be used to improve the design of surgical simulators that effectively impart skill by targeting perceptually significant aspects of the interaction.

Published in:

Haptics, IEEE Transactions on  (Volume:5 ,  Issue: 1 )