By Topic

Intrusion Detection System based on Data Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xiuqiao Wang ; Department of Computer Science, University of Jining, Qufu, China

In this paper, Data Mining is introduced into the Intrusion Detection System, which overcomes the defects of traditional detection technology. The nuclear association rules algorithm applied to the intrusion detection matrix is optimized, which make it possible to reduce the Average-Case Time Complexity, improve the efficiency considerably, and make it easy to process magnanimity data. In this way, attacks will be detected promptly to achieve the goal of intrusion detection. Finally, the mining of normal connection rules in the knowledge base of intrusion detection matrix will be accomplished. The experiment indicates that the matrix is able to generate new rules after extracting features, and also proves the validity and the feasibility of the IDS.

Published in:

Computer Science and Service System (CSSS), 2011 International Conference on

Date of Conference:

27-29 June 2011