Cart (Loading....) | Create Account
Close category search window
 

Fast and high quality super-resolution combined learning-based with TV regularization method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Goto, T. ; Dept. of Comput. Sci. & Eng., Nagoya Inst. of Technol., Nagoya, Japan ; Suzuki, S. ; Hirano, S. ; Sakurai, M.

Super-resolution image reconstruction is an important technology in many image processing areas such as image sensing, medical imaging, satellite imaging, and television signal conversion. It is also a key word of a recent consumer HDTV set that utilizes the CELL processor. Among various super-resolution methods, the learning-based method is one of the most promising solutions. The problem of the learning-based method is its enormous computational time for image searching from the large database of training images. We have proposed a new Total Variation (TV) regularization super-resolution method that utilizes a learning-based super-resolution method. We have obtained excellent results in image quality improvement. However, our proposed method needs long computational time because of the learning-based method. In this paper, we examine two methods that reduce the computational time of the learning-based method. The resulting algorithms reduce complexity significantly while maintaining comparable image quality. This enables the adoption of learning-based super-resolution to the motion pictures such as HDTV and internet movies.

Published in:

Consumer Electronics (ISCE), 2011 IEEE 15th International Symposium on

Date of Conference:

14-17 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.