By Topic

A 1.5-MW, 140-GHz, TE28,16-coaxial cavity gyrotron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Piosczyk, B. ; Inst. fur Tech. Phys., Forschungszentrum Karlsruhe, Germany ; Braz, O. ; Dammertz, G. ; Iatrou, C.T.
more authors

The design of a 1.5-MW, 140-GHz, TE-28,16-coaxial cavity gyrotron is presented and results of experimental operation are given. A cavity with a cylindrical outer wall and a radially tapered inner rod with longitudinal corrugations was used. A maximum output power of 1.17 MW has been measured in the design mode with an efficiency of 27.2%. Single-mode operation has been found over a wide range of operating parameters. The experimental values agree well with the results of multimode calculations. Frequency-step tuning has been performed between 115.6 and 164.2 GHz. In particular, an output power of 0.9 MW has ben measured in the TE25,14 mode at 123.0 GHz and 1.16 MW in the TE32,18 mode at 158.9 GHz. At frequencies its with strong window reflections the parameter range for which stable operation is possible is reduced significantly. In order to obtain results relevant for a technical realization of a continuously operated gyrotron, a tube with a radial radio frequency (RF)-beam output through two output windows and a single-stage depressed collector has been designed and is under fabrication. A two-step mode conversion scheme-TE- 28,16 to Te+76.2 to TEM00-which generates two narrowly directed (60° at the launcher) output wavebeams has been chosen for a quasioptical (q,o) mode converter system. A conversion efficiency of 94% is expected

Published in:

Plasma Science, IEEE Transactions on  (Volume:25 ,  Issue: 3 )