By Topic

Oscillating two-stream instability of a plasma wave in a plasma channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Ramachandran ; Dept. of Phys., Indian Inst. of Technol., Delhi, India ; V. K. Tripathi

A long wavelength Langmuir wave (ω0, k0), propagating through a parabolic plasma density channel, can decay into a low-frequency mode (ω,k&oarr;) and two short wavelength Langmuir wave sidebands (ν1,2,k&oarr;1,2 ), via two-stream instability where ω1,2=ω∓ω0 and k&oarr;1,2=k&oarr;∓k&oarr;0. Depending on the mode number n, the growth rate maximizes in the range γmax≃0.1ωpi-0.4ωpi for the range of k from 0.1(ωpi/cs) to 0.2(ωpi/cx) for ν0th where ν0 and νth are the oscillatory and thermal velocities of electrons, ωpi is the ion plasma frequency on the axis, and cs is the sound speed. The growth rate increases with the width a of the plasma density channel. It decreases with the mode number. The instability may be relevant to laser based charged particle accelerators

Published in:

IEEE Transactions on Plasma Science  (Volume:25 ,  Issue: 3 )