By Topic

Microwave-Plasma-Coupled Re-Ignition of Methane-and-Oxygen Mixture Under Auto-Ignition Temperature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xing Rao ; Facility for Rare Isotope Beam, Michigan State Univ., East Lansing, MI, USA ; Hammack, S. ; Carter, C. ; Grotjohn, T.
more authors

The re-ignition phenomenon is observed when fuel/oxidizer is re-introduced into an atmospheric-pressure plasma discharge generated by cutting off the gas flow in a re-entrant microwave-plasma applicator system used for plasma-assisted ignition and combustion research works. Results indicate that, for re-ignition to occur, the electric field must be strong enough to fully establish a weakly ionized and self-sustained plasma discharge, and with elevated radical concentrations. The re-ignition was possible at gas flow speeds higher than typical flame propagation rates, and temperature measurements (thermocouple and N2 emission) reveal that re-ignition occurs under auto-ignition temperatures. The high-speed imaging of the flame propagation shows that it is a two step process of initiating a fast pyrolysis flame, which, in turn, stabilizes and starts the direct coupling process of the plasma energy into the flame for full re-ignition to occur.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 12 )