By Topic

All Active MMIC-Based Wireless Communication at 220 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

A wireless data link operating at a carrier frequency of 220 GHz is supporting a data rate of up to 25 Gbit/s in on-off-keyed PRBS as well as complex 256-QAM (quadrature amplitude modulation) transmission. The millimeter-wave transmit and receive frontends consist of active multi-functional millimeter-wave microwave integrated circuits (MMICs), realized in 50 nm mHEMT technology and packaged into split-block waveguide modules. The paper presents system considerations for wireless links in the 200-300-GHz range, discusses the design and performance of dedicated broadband transmit and receive MMICs, and presents link experiments. With an RF transmit power of -3.4-1.4 dBm in the IF frequency range from 0 to 20 GHz , a receiver conversion gain of better than -4.8 dB up to 270 GHz and an estimated noise figure of less than 7.5 dB at 220 GHz, a 231-1 PRBS with a data rate of up to 25 Gbit/s is transmitted over 50 cm and received with an eye diagram quality factor >;3 . At 10 Gbit/s, an uncorrected bit-error rate (BER) of 1.6·10-9 is measured over a distance of 2 m. A 256-QAM signal with approx. 14 Mbit/s is received with an uncorrected BER of 9.1·10-4.

Published in:

Terahertz Science and Technology, IEEE Transactions on  (Volume:1 ,  Issue: 2 )