By Topic

Precision-Aware Self-Quantizing Hardware Architectures for the Discrete Wavelet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong-U Lee ; Mojix Inc., Los Angeles, CA, USA ; Lok-Won Kim ; John D. Villasenor

This paper presents designs for both bit-parallel (BP) and digit-serial (DS) precision-optimized implementations of the discrete wavelet transform (DWT), with specific consideration given to the impact of depth (the number of levels of DWT) on the overall computational accuracy. These methods thus allow customizing the precision of a multilevel DWT to a given error tolerance requirement and ensuring an energy-minimal implementation, which increases the applicability of DWT-based algorithms such as JPEG 2000 to energy-constrained platforms and environments. Additionally, quantization of DWT coefficients to a specific target step size is performed as an inherent part of the DWT computation, thereby eliminating the need to have a separate downstream quantization step in applications such as JPEG 2000. Experimental measurements of design performance in terms of area, speed, and power for 90-nm complementary metal-oxide-semiconductor implementation are presented. Results indicate that while BP designs exhibit inherent speed advantages, DS designs require significantly fewer hardware resources with increasing precision and DWT level. A four-level DWT with medium precision, for example, while the BP design is four times faster than the digital-serial design, occupies twice the area. In addition to the BP and DS designs, a novel flexible DWT processor is presented, which supports run-time configurable DWT parameters.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 2 )