Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Model following control with discrete time SMC for time-delayed bilateral control systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saglam, C.O. ; Fac. of Eng. & Natural Sci., Sabanci Univ., Istanbul, Turkey ; Baran, E.A. ; Nergiz, A.O. ; Sabanovic, A.

This paper proposes a new algorithm based on model following control to recover the uncompensated slave disturbance on time delayed motion control systems having contact with environment. In the previous works, a modified Communication Disturbance Observer (CDOB) was shown to be successful in ensuring position tracking in free motion under varying time delay. However, experiments show that due to the imperfections in slave plant Disturbance Observer (DOB) when there is rapid change of external force on the slave side, as in the case of environment contact, position tracking is degraded. This paper first analyzes the effect of environment contact for motion control systems with disturbance observers. Following this analysis, a model following controller scheme is proposed to restore the ideal motion on the slave system. A virtual plant is introduced which accepts the current from the master side and determines what the position output would be if there was no environment. Based on the error bet ween actual system and model system, a discrete time sliding mode controller is designed which enforces the real slave system to track the virtual slave output. In other words, convergence of slave position to the master position is achieved even though there is contact with environment. Experimental verification of the proposed control scheme also shows the improvement in slave position tracking under contact forces.

Published in:

Mechatronics (ICM), 2011 IEEE International Conference on

Date of Conference:

13-15 April 2011