Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Coordinated design of PSS and SVC damping controller using CPSO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eslami, M. ; Dept. of Electr., Electron. & Syst. Eng., Univ. Kebangsaan Malaysia, Bangi, Malaysia ; Shareef, H. ; Mohamed, A. ; Khajehzadeh, M.

This paper proposes a novel optimization technique for simultaneous coordinated designing of power system stabilizer (PSS) and static VAR compensator (SVC) as a damping controller in the multi-machine power system. PSO and chaos theory is hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. The coordinated design problem of PSS and SVC controllers over a wide range of loading conditions are formulated as a multi-objective optimization problem which is the aggregation of the two objectives related to the damping ratio and damping factor. The proposed damping controllers are tested on a weakly connected power system. The effectiveness of the proposed controllers is demonstrated through the eigenvalue analysis and nonlinear time-domain simulation. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the manually coordinated stabilizers of the PSS and the SVC damping controller.

Published in:

Power Engineering and Optimization Conference (PEOCO), 2011 5th International

Date of Conference:

6-7 June 2011