By Topic

Semantics of Higher-Order Quantum Computation via Geometry of Interaction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ichiro Hasuo ; Dept. Comput. Sci., Univ. of Tokyo, Tokyo, Japan ; Naohiko Hoshino

While much of the current study on quantum computation employs low-level formalisms such as quantum circuits, several high-level languages/calculi have been recently proposed aiming at structured quantum programming. The current work contributes to the semantical study of such languages, by providing interaction-based semantics of a functional quantum programming language, the latter is based on linear lambda calculus and is equipped with features like the! modality and recursion. The proposed denotational model is the first one that supports the full features of a quantum functional programming language, we also prove adequacy of our semantics. The construction of our model is by a series of existing techniques taken from the semantics of classical computation as well as from process theory. The most notable among them is Girard's Geometry of Interaction (GoI), categorically formulated by Abramsky, Haghverdi and Scott. The mathematical genericity of these techniques - largely dueto their categorical formulation - is exploited for our move from classical to quantum.

Published in:

Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on

Date of Conference:

21-24 June 2011