By Topic

Synchronization for Impulse-Radio UWB With Energy-Detection and Multi-User Interference: Algorithms and Application to IEEE 802.15.4a

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Flury, M. ; Sch. of Comput. & Commun. Sci., Ecole Polytech. Federate (EPFL), Lausanne, Switzerland ; Merz, R. ; Le Boudec, J.-Y.

Energy-detection (ED) receivers can take advantage of the ranging and multipath resistance capabilities of impulse-radio ultra-wideband (IR-UWB) physical layers at a much lower complexity than coherent receivers. However, ED receivers are extremely vulnerable to multi-user interference (MUI). Therefore, the design of IR-UWB ED architectures must take MUI into account. In this paper, we present the design and evaluation of two complementary algorithms for reliable and robust synchronization of IR-UWB ED receivers in the presence of MUI: 1) power-independent detection and preamble code interference cancellation (PICNIC) and 2) detection of start-frame-delimiter through sequential ratio tests (DESSERT). PICNIC addresses packet detection and timing acquisition while DESSERT focuses on start-frame-delimiter (SFD) detection. Both algorithms are evaluated with the IEEE 802.15.4a IR-UWB physical layer, standardized for low data-rate networks. The performance evaluation with extensive simulations show that our algorithms outperform nonrobust synchronization algorithms by up to two orders of magnitude in the presence of MUI.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 11 )