By Topic

DIBL-Induced Program Disturb Characteristics in 32-nm NAND Flash Memory Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Myounggon Kang ; Interuniv. Semicond. Res. Center, Seoul Nat. Univ., Seoul, South Korea ; Wookghee Hahn ; Il Han Park ; Juyoung Park
more authors

In this brief, we have investigated the program disturb characteristics caused by drain-induced barrier lowering (DIBL) in a 32-nm nand Flash memory device. It was found that the VTH shift of the (N + 2)th erased state cell is larger than that of the (N + 1)th erased state cell if it is assumed that the channel of the Nth cell is cut off. It is revealed that the cut off is caused by a cell-to-cell coupling effect that is becoming more severe in the development of high-density Flash memory arrays.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 10 )