By Topic

Coherent optical frequency domain reflectometry using phase-decorrelated reflected and reference lightwaves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tsuji, K. ; NTT Access Network Syst. Labs., Ibaraki, Japan ; Shimizu, K. ; Horiguchi, T. ; Koyamada, Y.

We report a new scheme for coherent optical frequency domain reflectometry (C-OFDR) where the coherence length of the lightwaves does not limit the measureable fiber length. In this scheme, we use the beat spectrum which results when we mix reflected and reference lightwaves whose phases are not correlated. We demonstrated this scheme using a narrow-linewidth-lightwave source and an external electro-optical phase modulator. We measured Rayleigh backscattering and Fresnel reflections from a 30-Ion optical fiber, and achieved a spatial resolution of 5 m for two neighboring Fresnel reflectors located at the far end of the fiber. We estimated the expected spatial resolution and single-way dynamic range for our new scheme and show that it is capable of measuring long optical fibers with high-spatial resolution

Published in:

Lightwave Technology, Journal of  (Volume:15 ,  Issue: 7 )