By Topic

Integration and packaging technology of MEMS-on-CMOS tactile sensor for robot application using molded thick BCB layer and backside-grooved electrical connection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

This paper describes a novel integration and packaging process for a chip-size-packaged integrated tactile sensor. A MEMS wafer and a CMOS wafer were bonded with a thick (50 μm thick) BCB (benzocyclobutene) layer, which also works as the dielectric layer of sensing electrodes. The large thickness is advantageous to reduce parasitic capacitance to the CMOS circuit. The thick BCB layer was formed on the CMOS wafer and molded with a glass mold to make a flat surface with via holes. For surface mounting, bond pads are located on the backside of the sensor chip by drawing electrical feed lines through the chip edge. To make the feed lines in wafer level, tapered grooves were fabricated along the scribe lines by TMAH wet etching, and half dicing was done along the grooves to access electrodes on the BEOL layer. Finally, the tactile senor was completed and preliminarily evaluated.

Published in:

Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International

Date of Conference:

5-9 June 2011