By Topic

New approach for distributed clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghanem, S. ; Dept. of Comput. Sci., Univ. of Bejaia, Bejaia, Algeria ; Kechadi, T. ; Tari, A.K.

Nowadays the data collections are huge and in most cases do not reside in a centralised location. The latter complicates the task of traditional data mining techniques, as datasets are distributed and often heterogeneous. In this paper we propose a distributed approach based on the aggregation of models produced locally. The datasets will be processed locally on each node to produce clusters from local data then, we construct global clusters hierarchically. The aim of this approach is to minimise the communications, maximise the parallelism and load balance the work among different nodes of the system, and reduce the overhead due to extra processing while executing the hierarchical clustering. This technique is evaluated and compared to the sequential version using benchmark datasets and the results are very promising.

Published in:

Spatial Data Mining and Geographical Knowledge Services (ICSDM), 2011 IEEE International Conference on

Date of Conference:

June 29 2011-July 1 2011