By Topic

Self-pulsations in strongly coupled asymmetric external cavity semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jong-Dae Park ; Center for High Technol. Mater., New Mexico Univ., Albuquerque, NM, USA ; Seo, Dong-Sun ; McInerney, J.G.

Self-pulsations in asymmetric external cavity semiconductor lasers are studied experimentally and are analyzed using improved rate equations which include multiple reflections. These equations are valid for arbitrary levels of coherent external optical feedback. The dependence of self-pulsation frequencies on injection current, external mirror tilt angle and reflectivity, and external cavity length is explained by small-signal analysis of the rate equations. By numerical integration of the rate equations, self-pulsations are demonstrated theoretically and resonant enhancement of intensity noise is shown to occur when the self-pulsation frequency is an integer fraction of the external cavity resonance frequency

Published in:

Quantum Electronics, IEEE Journal of  (Volume:26 ,  Issue: 8 )