By Topic

Reduced dimension robust Capon beamforming for large aperture passive sonar arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Somasundaram, S.D. ; Thales Underwater Syst., Stockport, UK

In passive sonar, adaptive beamforming can be used to increase the array output signal-to-interference-plus-noise ratio (SINR) over delay-and-sum techniques, provided that array steering vector (ASV) and covariance matrix errors are accounted for. By exploiting ellipsoidal sets of the ASV, robust Capon beamformers (RCBs) systematically allow for ASV errors. For large aperture, many-element passive sonar arrays, the computational and sample support requirements often make element-space beamforming unfeasible and one is forced to consider reduced-dimension techniques. Here, a framework is proposed for combining reduced-dimension and RCB methods, producing rapidly converging, low complexity reduced-dimension RCBs (RDRCBs) allowing for ASV errors. The key contribution is the derivation of reduced-dimension ellipsoids, used by the RDRCBs, from typically available element-space sets and the dimension-reducing transformation(s) via propagation. The method allows for any ellipsoidal element-space ASV set and any full (column) rank dimension-reducing transformation. Here, for the application, the author considers the use of beamspace techniques within the RDRCB framework. The SINR of the RDRCBs are analysed, showing where they can outperform their element-space counter-parts. The benefits of using the RDRCBs are illustrated on experimental passive sonar data.

Published in:

Radar, Sonar & Navigation, IET  (Volume:5 ,  Issue: 7 )