By Topic

Frequency-Domain Turbo Equalization with Soft Successive Interference Cancellation for Single Carrier MIMO Underwater Acoustic Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian Zhang ; Broadcom Corp., San Diego, CA, USA ; Yahong Rosa Zheng

This paper proposes a low-complexity frequency-domain turbo equalizer (FDTE) combined with phase rotation compensation and soft successive interference cancellation (SSIC) for single carrier multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. Different from existing time-domain turbo equalizers in MIMO UWA systems, the proposed receiver implements low-complexity turbo equalization in the frequency domain to combat severe inter-symbol interference (ISI) and employs a layered structure to cope with unbalanced MIMO channels. Soft, rather than hard, successive interference cancellation (SIC) is employed in the layered iterative turbo detection to alleviate co-channel interference (CCI), and phase compensation is utilized within the layered FDTE to mitigate phase rotation. The proposed scheme was evaluated by the SPACE08 experiment conducted in a shallow area of the Atlantic Ocean in October 2008. The 2-transducer 12-hydrophone MIMO system communicated with quaternary phase shift keying (QPSK) and 8-phase shift keying (8PSK) modulation schemes over 200 m and 1000 m ranges, where the proposed FDTE-SSIC scheme achieved low bit error rates (BERs) with only a few iterations. Simulation results also demonstrated that the proposed FDTE-SSIC receiver provided lower BER than one-layer FDTE receivers with comparable complexity.

Published in:

IEEE Transactions on Wireless Communications  (Volume:10 ,  Issue: 9 )