By Topic

Petri Net Modeling of Cyber-Physical Attacks on Smart Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, T.M. ; Avaya Labs. Res., Basking Ridge, NJ, USA ; Sanchez-Aarnoutse, J.C. ; Buford, J.

This paper investigates the use of Petri nets for modeling coordinated cyber-physical attacks on the smart grid. Petri nets offer more flexibility and expressiveness than traditional attack trees to represent the actions of simultaneous attackers. However, Petri net models for attacks on very large critical infrastructures such as the smart grid require a great amount of manual effort and detailed expertise in cyber-physical threats. To overcome these obstacles, we propose a novel hierarchical method to construct large Petri nets from a number of smaller Petri nets that can be created separately by different domain experts. The construction method is facilitated by a model description language that enables identical places in different Petri nets to be matched. The new modeling approach is described for an example attack on smart meters, and its efficacy is demonstrated by a proof-of-concept Python program.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 4 )