Cart (Loading....) | Create Account
Close category search window
 

A Chance-Constrained Two-Stage Stochastic Program for Unit Commitment With Uncertain Wind Power Output

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qianfan Wang ; Dept. of Ind. & Syst. Eng., Univ. of Florida, Gainesville, FL, USA ; Yongpei Guan ; Jianhui Wang

In this paper, we present a unit commitment problem with uncertain wind power output. The problem is formulated as a chance-constrained two-stage (CCTS) stochastic program. Our model ensures that, with high probability, a large portion of the wind power output at each operating hour will be utilized. The proposed model includes both the two-stage stochastic program and the chance-constrained stochastic program features. These types of problems are challenging and have never been studied together before, even though the algorithms for the two-stage stochastic program and the chance-constrained stochastic program have been recently developed separately. In this paper, a combined sample average approximation (SAA) algorithm is developed to solve the model effectively. The convergence property and the solution validation process of our proposed combined SAA algorithm is discussed and presented in the paper. Finally, computational results indicate that increasing the utilization of wind power output might increase the total power generation cost, and our experiments also verify that the proposed algorithm can solve large-scale power grid optimization problems.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 1 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.