By Topic

Analyzing the Performance of Greedy Maximal Scheduling via Local Pooling and Graph Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Berk Birand ; Department of Electrical Engineering, Columbia University, New York, NY, USA ; Maria Chudnovsky ; Bernard Ries ; Paul Seymour
more authors

Efficient operation of wireless networks and switches requires using simple (and in some cases distributed) scheduling algorithms. In general, simple greedy algorithms (known as Greedy Maximal Scheduling, or GMS) are guaranteed to achieve only a fraction of the maximum possible throughput (e.g., 50% throughput in switches). However, it was recently shown that in networks in which the Local Pooling conditions are satisfied, GMS achieves 100% throughput. Moreover, in networks in which the σ-Local Pooling conditions hold, GMS achieves σ% throughput. In this paper, we focus on identifying the specific network topologies that satisfy these conditions. In particular, we provide the first characterization of all the network graphs in which Local Pooling holds under primary interference constraints (in these networks, GMS achieves 100% throughput). This leads to a linear-time algorithm for identifying Local-Pooling-satisfying graphs. Moreover, by using similar graph-theoretical methods, we show that in all bipartite graphs (i.e., input-queued switches) of size up to 7 × n, GMS is guaranteed to achieve 66% throughput, thereby improving upon the previously known 50% lower bound. Finally, we study the performance of GMS in interference graphs and show that in certain specific topologies, its performance could be very bad. Overall, the paper demonstrates that using graph-theoretical techniques can significantly contribute to our understanding of greedy scheduling algorithms.

Published in:

IEEE/ACM Transactions on Networking  (Volume:20 ,  Issue: 1 )