By Topic

Automated Optimal Design of Input Filters for Direct AC/AC Matrix Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Andrew Trentin ; Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, U.K. ; Pericle Zanchetta ; Jon Clare ; Patrick Wheeler

This paper presents a novel method to design the input filter for a direct ac/ac matrix converter using genetic algorithms (GA) optimization. The input filter for a matrix converter is a very important and critical part of the conversion structure and careful design is necessary to ensure high input power quality, compactness, and stability. The GA will optimize structure and parameters of the input filter as a function of different factors such as energy storage, weight, and volume. The effectiveness of this design method is demonstrated through a wide range of simulations using Saber and experimental results on a laboratory prototype. The same methodology could also be adapted and applied to any converter configuration such as, for example, traditional voltage source converters.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:59 ,  Issue: 7 )