By Topic

Least-squares LDA via rank-one updates with concept drift

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi-Ren Yeh ; Res. Center for Inf. Technol. Innovation, Acad. Sinica, Taipei, Taiwan ; Wang, Y.-C.F.

Standard linear discriminant analysis (LDA) is known to be computationally expensive due to the need to perform eigen-analysis. Based on the recent success of least-squares LDA (LSLDA), we propose a novel rank-one update method for LSLDA, which not only alleviates the computation and memory requirements, and is also able to solve the adaptive learning task of concept drift. In other words, our proposed LSLDA can efficiently capture the information from recently received data with gradual or abrupt changes in distribution. Moreover, our LSLDA can be extended to recognize data with newly-added class labels during the learning process, and thus exhibits excellent scalability. Experimental results on both synthetic and real datasets confirm the effectiveness of our propose method.

Published in:

Statistical Signal Processing Workshop (SSP), 2011 IEEE

Date of Conference:

28-30 June 2011