By Topic

High-order local dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuval Tassa ; Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel ; Emanuel Todorov

We describe a new local dynamic programming algorithm for solving stochastic continuous Optimal Control problems. We use cubature integration to both propagate the state distribution and perform the Bellman backup. The algorithm can approximate the local policy and cost-to-go with arbitrary function bases. We compare the classic quadratic cost-to-go/linear-feedback controller to a cubic cost-to-go/quadratic policy controller on a 10-dimensional simulated swimming robot, and find that the higher order approximation yields a more general policy with a larger basin of attraction.

Published in:

2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)

Date of Conference:

11-15 April 2011