By Topic

Wide-Dynamic-Range APS-Based Silicon Retina With Brightness Constancy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kazuhiro Shimonomura ; Department of Robotics, Ritsumeikan University, Kusatsu, Shiga, Japan ; Seiji Kameda ; Atsushi Iwata ; Tetsuya Yagi

A silicon retina is an intelligent vision sensor that can execute real-time image preprocessing by using a parallel analog circuit that mimics the structure of the neuronal circuits in the vertebrate retina. For enhancing the sensor's robustness to changes in illumination in a practical environment, we have designed and fabricated a silicon retina on the basis of a computational model of brightness constancy. The chip has a wide-dynamic-range and shows a constant response against changes in the illumination intensity. The photosensor in the present chip approximates logarithmic illumination-to-voltage transfer characteristics as a result of the application of a time-modulated reset voltage technique. Two types of image processing, namely, Laplacian-Gaussian-like spatial filtering and computing the frame difference, are carried out by using resistive networks and sample/hold circuits in the chip. As a result of these processings, the chip exhibits brightness constancy over a wide range of illumination. The chip is fabricated by using the 0.25-μm complementary metal-oxide semiconductor image sensor technology. The number of pixels is 64 × 64, and the power consumption is 32 mW at the frame rate of 30 fps. We show that our chip not only has a wide-dynamic-range but also shows a constant response to the changes in illumination.

Published in:

IEEE Transactions on Neural Networks  (Volume:22 ,  Issue: 9 )