By Topic

A Genetic Fuzzy-Rule-Based Classifier for Land Cover Classification From Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dimitris G. Stavrakoudis ; Department of Electrical and Computer Engineering, Division of Electronics and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece ; Georgia N. Galidaki ; Ioannis Z. Gitas ; John B. Theocharis

This paper proposes the use of a genetic fuzzy-rule-based classification system for land cover classification from hyperspectral images. The proposed classifier, namely, Feature Selective Linguistic Classifier, is constructed through a three-stage learning process. The first stage produces a preliminary fuzzy rule base in an iterative fashion. During this stage, a local feature selection scheme is employed, designed to guide the genetic evolution, through the evaluation of deterministic information about the relevance of each feature with respect to its classification ability. The structure of the model is then simplified in a subsequent postprocessing stage. The performance of the classifier is finally optimized through a genetic tuning stage. An extensive comparative analysis, using an Earth Observing-1 Hyperion satellite image, highlights the quality advantages of the proposed system, when compared with nonfuzzy classifiers, commonly employed in hyperspectral classification tasks.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 1 )