By Topic

Improved Four-Component Model-Based Target Decomposition for Polarimetric SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zili Shan ; Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing, China ; Chao Wang ; Hong Zhang ; Wentao An

An improved four-component model-based target decomposition scheme for polarimetric synthetic aperture radar data is proposed in this letter. The reason for the emergence of the negative powers in the Yamaguchi decomposition has been analyzed, and three corresponding additional steps are added in the proposed scheme. First, the orientation angle compensation is applied to the coherency matrix. Second, the coherency matrix with the maximum entropy, i.e., the identity matrix is used as the volume scattering model instead of the traditional ones. Third, corresponding power constraints are appended to the scheme. Moreover, the densely vegetated areas and the residual areas are processed separately via the H/α/A classification in the proposed scheme. Finally, the polarimetric-scattering-characteristic-preserving classification is utilized to verify the improvements of the proposed scheme. To demonstrate the effectiveness of the decomposition, an Advanced Land Observing Satellite Phased-Array-type L-band Synthetic Aperture Radar polarimetric image acquired over Beijing, China, is analyzed, and the results are presented in this letter. With negative powers eliminated by the proposed scheme, improvements can be observed in the experimental results, particularly for the urban areas.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:9 ,  Issue: 1 )