By Topic

Design, construction and fly-by-wireless control of an autonomous Quadrotor helicopter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Camilo Ossa-Gómez ; Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, H3G 2W1, Canada ; Miad Moarref ; Luis Rodrigues

Abstract-This paper describes the design, development and analysis of an autonomous Quadrotor Unmanned Aerial Vehicle (UAV) that is controlled using fly-by-wireless technology. A communication protocol between the UAV and a Ground Control Station (GCS) is established to continuously send information from the on-board sensors to the GCS. There, a controller computes the control signal in real-time and sends it back to the UAV to act upon the actuators. An Inertial Measurement Unit (IMU) and a sonar are used as sensors to determine the attitude angles and the height of the UAV, respectively. A state-feedback controller is designed by pole placement. Considering the delays of the wireless network, a Lyapunov-Krasovskii functional is used to determine if the stability of the system is affected by the delay. Some results are presented from initial flight experiments in which attitude angles and altitude are stabilized.

Published in:

Fly by Wireless Workshop (FBW), 2011 4th Annual Caneus

Date of Conference:

14-17 June 2011