By Topic

Mutagenesis and screening of highly efficient pyrene degrading strains by N+-implantation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
You-Ting Meng ; Beijing Radiat. Center, Beijing, China ; Jing-Hua Jin

In this study, nitrogen ion implantation was used to mutate a pyrene-degrading bacterium, Gordona sp. hbs1, which was isolated from a polycyclic aromatic hydrocarbons (PAHs) contaminated soil. The pyrene degradation characteristics of hbs1, including isotherm and pH effect were observed. 200 mg/L pyrene, 53.78% was degraded by hbs1, equals to 10.75 mg/L. The optimum initial pH for pyrene degradation was 7 to 7.5. The mutagenesis was conducted by 30 KeV nitrogen ion implantation with the doses of 5×1012, 1×1013, 2×1013, 4×1013, 5×1013, 1×1014, 2×1014, 5×1014 ions/cm2. The results showed that the optimum dose was 1×1014 ions/cm2. Three highly pyrene degrading strains, hbs1-m11, hbs1-m23 and hbs1-m48 were obtained and their increased efficiencies were 18.72%, 10.71% and 13.10%, respectively. Furthermore, pyrene degrading rate of hbs1-m11 was higher than hbs1. These results imply that ion implantation could be a potential technology in environmental bioremediation.

Published in:

Remote Sensing, Environment and Transportation Engineering (RSETE), 2011 International Conference on

Date of Conference:

24-26 June 2011