By Topic

Join global inversion of GPR and P-wave seismic traveltimes using particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jens Tronicke ; Institut für Erd- un Umweltwissenschaften, Universität Potsdam, 14476, Germany ; Hendrik Paasche ; Urs Boniger

Particle swarm optimization (PSO) is a relatively new global optimization approach inspired by the social behavior of birds and fishes. Although this approach has proven to provide excellent convergence rates in different optimization problems, it has seldom been used in geophysical inversion. Here, we propose a PSO-based inversion strategy to jointly invert GPR and P-wave seismic traveltimes from co-located crosshole experiments. Using a synthetic data example, we demonstrate the potential of our approach. Comparing our results to the input models as well as to velocity models found by separately inverting the data using a standard linearized inversion approach, illustrates the benefits of using an efficient global optimization approach for such a joint inversion problem. These include a straightforward appraisal of uncertainty, non-uniqueness, and resolution issues as well as the possibility of an improved and more objective interpretation.

Published in:

Advanced Ground Penetrating Radar (IWAGPR), 2011 6th International Workshop on

Date of Conference:

22-24 June 2011