Cart (Loading....) | Create Account
Close category search window
 

Multiobjective Production Planning Optimization Using Hybrid Evolutionary Algorithms for Mineral Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gang Yu ; Key Lab. of Integrated Autom. of Process Ind., Northeastern Univ., Shenyang, China ; Tianyou Chai ; Xiaochuan Luo

The production planning optimization for mineral processing is important for non-renewable raw mineral resource utilization. This paper presents a nonlinear multiobjective programming model for a mineral processing production planning (MPPP) for optimizing five production indices, including its iron concentrate output, the concentrate grade, the concentration ratio, the metal recovery, and the production cost. A gradient-based hybrid operator is proposed in two evolutionary algorithms named the gradient-based NSGA-II (G-NSGA-II) and the gradient-based SPEA2 (G-SPEA2) for MPPP optimization. The gradient-based operator of the proposed hybrid operator is normalized as a strictly convex cone combination of negative gradient direction of each objective, and is provided to move each selected point along some descent direction of the objective functions to the Pareto front, so as to reduce the invalid trial times of crossover and mutation. Two theorems are established to reveal a descent direction for the improvement of all objective functions. Experiments on standard test problems, namely ZDT 1-3, CONSTR, SRN, and TNK, have demonstrated that the proposed algorithms can improve the chance of minimizing all objectives compared to pure evolutionary algorithms in solving the multiobjective optimization problems with differentiable objective functions under short running time limitation. Computational experiments in MPPP application case have indicated that the proposed algorithms can achieve better production indices than those of NSGA-II, T-NSGA-FD, T-NSGA-SP, and SPEA2 in the case of small number of generations. Also, those experimental results show that the proposed hybrid operators have better performance than that of pure gradient-based operators in attaining either a broad distribution or maintaining much diversity of obtained non-dominated solutions.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:15 ,  Issue: 4 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.