By Topic

Spectrum Leasing via Cooperative Opportunistic Routing Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chiarotto, D. ; Dept. of Inf. Eng., Univ. of Padova, Padova, Italy ; Simeone, O. ; Zorzi, M.

A licensed multihop network that coexists with a set of unlicensed nodes is considered. Coexistence is regulated via a spectrum leasing mechanism that is based on cooperation and opportunistic routing. Specifically, the primary network consists of a source and a destination communicating via a number of primary relay nodes. In each transmission block, the next hop is selected in an on-line fashion based on the channel conditions (and thus the decoding outcome) in the previous transmissions, according to the idea of opportunistic routing. The secondary nodes may serve as extra relays, and hence potential next hops, for the primary network, but only in exchange for spectrum leasing. Namely, in return for their forwarding of primary packets, secondary nodes are awarded spectral resources for transmission of their own traffic. Secondary nodes enforce Quality-of-Service requirements in terms of rate and reliability when deciding whether or not to cooperate. Four policies that exploit spectrum leasing via opportunistic routing in different ways are proposed. These policies are designed to span different operating points in the trade-off between gains in throughput and overall energy expenditure for the primary network. Analysis is carried out for networks with a linear geometry and quasi-static Rayleigh fading statistics by using Markov chain tools. Different multiplexing techniques are considered for multiplexing of the primary and secondary traffic at the secondary nodes, namely orthogonal multiplexing (such as time, frequency or orthogonal code division multiplexing) and superposition coding. The optimality in terms of both throughput and primary energy consumption of superposition coding over all possible multiplexing strategies, for the given routing techniques, is proved. Finally, numerical results demonstrate the advantages of the proposed spectrum leasing solution based on opportunistic routing and illustrate the trade-offs between primary throughput and energy co- - nsumption.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 9 )