By Topic

A 0.6-V 82-dB 28.6- \mu W Continuous-Time Audio Delta-Sigma Modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jinghua Zhang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Yong Lian ; Libin Yao ; Bo Shi

The design of a low-voltage low-power fourth-order single-bit continuous-time Delta-Sigma modulator is presented in this paper for audio applications. The modulator employs an input-feedforward topology in order to reduce internal signal swings, thus relaxes the linearity and slew rate requirements on amplifiers leading to low-voltage operation and low-power consumption. The energy efficiency is further improved by embedding the summation of feedforward paths into the quantizer. For low-voltage operation, a gain-enhanced fully-differential amplifier and a body-driven rail-to-rail input CMFB circuit are developed. The modulator, implemented in a 0.13-μm standard CMOS technology with a core area of 0.11 mm2, achieves an 82-dB dynamic range (DR), and a 79.1-dB peak signal-to-noise and distortion ratio (SNDR) over a 20-kHz signal bandwidth. The power consumption of the modulator is 28.6 μW under a 0.6-V supply voltage. The achieved performance make it one of the best among state-of-the-art sub-1-V modulators in terms of two widely used figures of merit.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:46 ,  Issue: 10 )