By Topic

An Image Fusion Approach Based on Markov Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Min Xu ; Blue Highway, LLC, Syracuse, USA ; Hao Chen ; Pramod K. Varshney

Markov random field (MRF) models are powerful tools to model image characteristics accurately and have been successfully applied to a large number of image processing applications. This paper investigates the problem of fusion of remote sensing images, e.g., multispectral image fusion, based on MRF models and incorporates the contextual constraints via MRF models into the fusion model. Fusion algorithms under the maximum a posteriori criterion are developed to search for solutions. Our algorithm is applicable to both multiscale decomposition (MD)-based image fusion and non-MD-based image fusion. Experimental results are provided to demonstrate the improvement of fusion performance by our algorithms.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 12 )