By Topic

Reconstructing Directed Signed Gene Regulatory Network From Microarray Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peng Qiu ; Dept. of Bioinf. & Comput. Biol., Univ. of Texas MD Anderson Cancer Center, Houston, TX, USA ; Plevritis, S.K.

Great efforts have been made to develop both algorithms that reconstruct gene regulatory networks and systems that simulate gene networks and expression data, for the purpose of benchmarking network reconstruction algorithms. An interesting observation is that although many simulation systems chose to use Hill kinetics to generate data, none of the reconstruction algorithms were developed based on the Hill kinetics. One possible explanation is that, in Hill kinetics, activation and inhibition interactions take different mathematical forms, which brings additional combinatorial complexity into the reconstruction problem. We propose a new model that qualitatively behaves similar to the Hill kinetics, but has the same mathematical form for both activation and inhibition. We developed an algorithm to reconstruct gene networks based on this new model. Simulation results suggested a novel biological hypothesis that in gene knockout experiments, repressing protein synthesis to a certain extent may lead to better expression data and higher network reconstruction accuracy.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 12 )