By Topic

Query Representation through Lexical Association for Information Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goyal, P. ; Intell. Syst. Res. Centre, Univ. of Ulster, Londonderry, UK ; Behera, L. ; McGinnity, T.M.

A user query for information retrieval (IR) applications may not contain the most appropriate terms (words) as actually intended by the user. This is usually referred to as the term mismatch problem and is a crucial research issue in IR. Using the notion of relevance, we provide a comprehensive theoretical analysis of a parametric query vector, which is assumed to represent the information needs of the user. A lexical association function has been derived analytically using the system relevance criteria. The derivation is further justified using an empirical evidence from the user relevance criteria. Such analytical derivation as presented in this paper provides a proper mathematical framework to the query expansion techniques, which have largely been heuristic in the existing literature. By using the generalized retrieval framework, the proposed query representation model is equally applicable to the vector space model (VSM), Okapi best matching 25 (Okapi BM25), and Language Model (LM). Experiments over various data sets from TREC show that the proposed query representation gives statistically significant improvements over the baseline Okapi BM25 and LM as well as other well-known global query expansion techniques. Empirical results along with the theoretical foundations of the query representation confirm that the proposed model extends the state of the art in global query expansion.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 12 )