By Topic

Efficient Mining of Frequent Item Sets on Large Uncertain Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Liang Wang ; Dept. of Comput. Sci., Univ. of Hong Kong, Hong Kong, China ; Cheung, D.W.-L. ; Cheng, R. ; Sau Dan Lee
more authors

The data handled in emerging applications like location-based services, sensor monitoring systems, and data integration, are often inexact in nature. In this paper, we study the important problem of extracting frequent item sets from a large uncertain database, interpreted under the Possible World Semantics (PWS). This issue is technically challenging, since an uncertain database contains an exponential number of possible worlds. By observing that the mining process can be modeled as a Poisson binomial distribution, we develop an approximate algorithm, which can efficiently and accurately discover frequent item sets in a large uncertain database. We also study the important issue of maintaining the mining result for a database that is evolving (e.g., by inserting a tuple). Specifically, we propose incremental mining algorithms, which enable Probabilistic Frequent Item set (PFI) results to be refreshed. This reduces the need of re-executing the whole mining algorithm on the new database, which is often more expensive and unnecessary. We examine how an existing algorithm that extracts exact item sets, as well as our approximate algorithm, can support incremental mining. All our approaches support both tuple and attribute uncertainty, which are two common uncertain database models. We also perform extensive evaluation on real and synthetic data sets to validate our approaches.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 12 )