Cart (Loading....) | Create Account
Close category search window
 

Creating Realistic Virtual Textures from Contact Acceleration Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Romano, J.M. ; Dept. of Mech. Eng. & Appl. Mech., Univ. of Pennsylvania, Philadelphia, PA, USA ; Kuchenbecker, K.J.

Modern haptic interfaces are adept at conveying the large-scale shape of virtual objects, but they often provide unrealistic or no feedback when it comes to the microscopic details of surface texture. Direct texture-rendering challenges the state of the art in haptics because it requires a finely detailed model of the surface's properties, real-time dynamic simulation of complex interactions, and high-bandwidth haptic output to enable the user to feel the resulting contacts. This paper presents a new, fully realized solution for creating realistic virtual textures. Our system employs a sensorized handheld tool to capture the feel of a given texture, recording three-dimensional tool acceleration, tool position, and contact force over time. We reduce the three-dimensional acceleration signals to a perceptually equivalent one-dimensional signal, and then we use linear predictive coding to distill this raw haptic information into a database of frequency-domain texture models. Finally, we render these texture models in real time on a Wacom tablet using a stylus augmented with small voice coil actuators. The resulting virtual textures provide a compelling simulation of contact with the real surfaces, which we verify through a human subject study.

Published in:

Haptics, IEEE Transactions on  (Volume:5 ,  Issue: 2 )

Date of Publication:

April-June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.