Cart (Loading....) | Create Account
Close category search window

Design, Performance, and Energy Consumption of eDRAM/SRAM Macrocells for L1 Data Caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Valero, A. ; Dept. of Comput. Eng. (DISCA), Univ. Politec. de Valencia, Valencia, Spain ; Petit, S. ; Sahuquillo, J. ; Lopez, P.
more authors

SRAM and DRAM have been the predominant technologies used to implement memory cells in computer systems, each one having its advantages and shortcomings. SRAM cells are faster and require no refresh since reads are not destructive. In contrast, DRAM cells provide higher density and minimal leakage energy since there are no paths within the cell from Vdd to ground. Recently, DRAM cells have been embedded in logic-based technology (eDRAM), thus overcoming the speed limit of typical DRAM cells. In this paper, we propose a hybrid n-bit macrocell that implements one SRAM cell and n-1 eDRAM cells. This cell is aimed at being used in an n-way set-associative first-level data cache. Architectural mechanisms (e.g., special writeback policies) have been devised to completely avoid refresh logic. Performance, energy, and area have been analyzed in detail. Experimental results show that using typical eDRAM capacitors, and compared to a conventional cache, a 4-way set-associative hybrid cache reduces both energy consumption and area up to 54 and 29 percent, respectively, while having negligible impact on performance (less than 2 percent).

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 9 )

Date of Publication:

Sept. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.